Strain number | NIES-94 | |||
---|---|---|---|---|
Phylum | Chlorophyta | |||
Class | Chlorophyceae | |||
Scientific name | Scenedesmus acutus Meyen | |||
Synonym | ||||
Former name | ||||
Common name | Green alga | |||
Locality (Date of collection) | Kosaka River, Akita, Japan (1983-04-19) | |||
Latitude / Longitude | ||||
Habitat (Isolation source) | Freshwater (River water) | |||
History | < Yuri, Akira | |||
Isolator (Date of isolation) | Yuri, Akira (1983-05-20) | |||
Identified by | Watanabe, Masayuki | |||
State of strain | Cryopreservation; Unialgal; Clonal; Axenic | |||
Culture condition (Preculture condition) |
Medium:
C (agar)
Temperature: 20 (25) C Light intensity: 4-10 (14-16) µmol photons/m2/sec, L/D cycle: 10L:14D Duration: 3 M (14 D) |
|||
Gene information | ||||
Cell size (min - max) | - 10 μm | |||
Organization | ||||
Characteristics | ||||
Other strain no. | Other strain no. : 2-2-3-1 | |||
Remarks | Cryopreserved; Axenic | |||
Movie |
Reference |
---|
Park, B. S., Park, C.-S., Shin, Y., Yoon, S., Han, M.-S., Kang, Y.-H.
2022
Different algicidal modes of the two bacteria Aeromonas bestiarum HYD0802-MK36 and Pseudomonas syringae KACC10292T against harmful cyanobacteria Microcystis aeruginosa.
Toxins,
14,
128 (article ID).
Keywords: Microcystis aeruginosa; algicidal bacteria; Aeromonas bestiarum; Pseudomonas syringe; algicidal modes Strain(s): 94, 298 PubMed: 35202155 DOI: 10.3390/toxins14020128 Gu, Y., Tobino, T., Nakajima, F. 2021 Determining the relative importance of dietborne and waterborne toxicity of 4-tert-butylphenol and 4-tert-octylphenol to the benthic crustacean, Heterocypris incongruens. Environ. Sci. Technol., 55, 7939–7948. Keywords: alkylphenol; toxicity test; dietborne toxicity; exposure route; Heterocypris incongruens; ISO 14371 Strain(s): 94, 797, 2170 PubMed: 34047553 DOI: 10.1021/acs.est.0c08164 Mathiot, C., Ponge, P., Gallard, B., Sassi, J.-F., Delrue, F., Le Moigne, N. 2019 Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr. Polym., 208/, 142-151. Keywords: Microalgae; Bioplastics; Starch; Plasticization; Extrusion Strain(s): 94, 227, 2152, 2173, 2195, 2280 PubMed: 30658785 DOI: 10.1016/j.carbpol.2018.12.057 Hiki, K., Tsuchikawa, M., Nakajima, F., Tobino, T. 2019 Identification of antioxidant genes in the ostracod Heterocypris incongruens through de novo transcriptome sequencing. J. JSCE, 7, 133-142. Keywords: Heterocypris incongruens, ostracod, antioxidant genes, de novo transcriptome, toxicity, road dust Strain(s): 94 DOI: 10.2208/journalofjsce.7.1_133 Ko, S. R., Lee, Y. K., Srivastava, A., Park, S. H., Ahn, C. Y., Oh, H. M. 2019 The selective inhibitory activity of a fusaricidin derivative on a bloom-Forming cyanobacterium, Microcystis sp. J. Microbiol. Biotechnol., 29, 59-65. Keywords: Bloom control; cyanobacteria; fusaricidin; Microcystis; Paenibacillus polymyxa Strain(s): 23, 94 PubMed: 30394041 DOI: 10.4014/jmb.1804.04031 Niyommaneerat, W., Nakajima, F., Tobino, T., Yamamoto, K. 2017 Development of a chronic sediment toxicity test using the benthic ostracod Heterocypris incongruens and their application to toxicity assessments of urban road dust. Ecotox. Environ. Safe., 143, 266-274. Keywords: Chronic sediment toxicity test; Heterocypris incongruens; Test repeatability; Reproduction; Urban road dust Strain(s): 94 PubMed: 28551584 DOI: 10.1016/j.ecoenv.2017.05.011 Kang, Y-H., Kang, S-K., Park, C-S., Joo, J-H., Lee, J-W., Han, M-S. 2016 Use of lactic acid bacteria as a biological agent against the cyanobacterium Anabaena flos-aquae. J. Appl. Phycol., 28, 1747-1757. Keywords: Lactic acidbacteria; Cyanobacteriacidalbacteria; Anabaena flos-aquae; Biological control Strain(s): 75, 94, 298 DOI: 10.1007/s10811-015-0701-7 Watanabe, H., Nakajima, F., Kasuga, I., Furumai, H. 2013 Application of whole sediment toxicity identification evaluation proceduresto road dust using a benthic ostracod Heterocypris incongruens. Ecotox. Environ. Safe., 89, 245-251. Keywords: Road dust; Ostracod; Toxicity identification evaluation; Adsorbent Strain(s): 94 PubMed: 23294638 DOI: 10.1016/j.ecoenv.2012.12.003 Kang, Y.-H., Park, C.-S., Han, M.-S. 2012 Pseudomonas aeruginosa UCBPP-PA14 a useful bacterium capable of lysing Microcystis aeruginosa cells and degrading microcystins. J. Appl. Phycol., 24, 1517-1525. Keywords: Microcystis aeruginosa; Microcystins; Algicidal bacteria; Pseudomonas aeruginosa Strain(s): 44, 94, 298 DOI: 10.1007/s10811-012-9812-6 Watanabe, H., Nakajima, F., Kasuga, I., Furumai, H. 2011 Toxicity evaluation of road dust in the runoff process using a benthic ostracod Heterocypris incongruens. Sci. Total Environ., 409, 2366-2372. Keywords: road dust; toxicity; benthic ostracod; runoff process; solid/liquid ratio; holding time; water phase; solid phase Strain(s): 94 PubMed: 21458026 DOI: 10.1016/j.scitotenv.2011.03.001 Nakajima, N., Teramoto, T., Kasai, F., Sano, T., Tamaoki, M., Aono, M., Kubo, A., Kamada, H., Azumi, Y., Saji, H. 2007 Glycosylation of bisphenol A by freshwater microalgae. Chemosphere, 69, 934-941. Keywords: Metabolite; Glucoside; Galactoside; Endocrine disruptors Strain(s): 35, 94, 96, 151, 245, 424, 468, 763 PubMed: 17629547 DOI: 10.1016/j.chemosphere.2007.05.088 Mori, F., Erata, M., Watanabe, M. M. 2002 Cryopreservation of cyanobacteria and green algae in the NIES-Collection. Microbiol. Cult. Coll., 18, 45-55. Keywords: cryopreservation; cyanobacteria; green algae; FDA staining method; NIES-Collection Strain(s): 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 119, 120, 122, 123, 125, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 144, 147, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188, 189, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 224, 226, 227, 228, 229, 230, 231, 232, 241, 242, 243, 244, 245, 246, 248, 257, 259, 261, 263, 266, 267, 268, 287, 288, 289, 290, 294, 295, 297, 298, 299, 300, 301, 302, 303, 305, 306, 308, 309, 310, 312, 313, 329, 334, 337, 338, 339, 340, 341, 342, 349, 351, 359, 360, 361, 362, 375, 378, 379, 380, 382, 384, 385, 390, 394, 396, 397, 398, 415, 416, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 468, 469, 474, 478, 479, 480, 481, 503, 504, 505, 506, 507, 509, 510, 512, 514, 515, 522, 523, 524, 527, 528, 529, 530, 531, 532, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 592, 593, 594, 595, 596, 597, 598, 604, 610, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 672, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729 Watanabe, Y., Ohmura, N., Saiki, H. 1992 Microbial CO2 fixation. 2. Isolation and determination of cultural characteristics of Chlorella strains which function under CO2 enriched atmosphere. CRIEPI Kenkyû-Hôkoku, U92014, 1-21 (in Japanese with English summary). Keywords: climate change; CO2; CO2 fixation; microalgae; Chlorella Strain(s): 27, 45, 92, 94, 122, 158, 204, 226, 227 |
Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.