Strain number | NIES-2199 | |||
---|---|---|---|---|
Phylum | Chlorophyta | |||
Class | Trebouxiophyceae | |||
Scientific name | Botryococcus braunii Kützing | |||
Synonym | ||||
Former name | ||||
Common name | Green alga | |||
Locality (Date of collection) | brick pits, Madingley, Cambridge, England, U.K. | |||
Latitude / Longitude | 52.223633 / 0.040854 | |||
Habitat (Isolation source) | ||||
History | < IAM (2007) < Hara, Yoshiaki < UTEX (1986) | |||
Isolator (Date of isolation) | Droop, M. R. | |||
Identified by | ||||
State of strain | Cryopreservation; Unialgal; Clonal; Axenic[2018 Jan] | |||
Culture condition (Preculture condition) |
Medium:
C (agar)
Temperature: 20 C Light intensity: 3-5 µmol photons/m2/sec, L/D cycle: 10L:14D Duration: 6 M |
|||
Gene information | 18S rRNA ( AB780365 ) | |||
Cell size (min - max) | 8 - 15 μm | |||
Organization | ||||
Characteristics | oil (hydrocarbon) production (Race A) | |||
Other strain no. |
Other collection strain no. : IAM C-529; CCAP 807/1; UTEX LB572; SAG B 807-1
|
|||
Remarks | Cryopreserved[2017 Nov]; Axenic; Very slow growth | |||
Movie |
Reference |
---|
Zhu, J. & Wakisaka, M.
2019
Effect of air nanobubble water on the growth and metabolism of Haematococcus lacustris and Botryococcus braunii.
J. Nutr. Sci. Vitaminol.,
65,
S212-S216.
Keywords: Botryococcus braunii; Haematococcus lacustris; astaxanthin; lipid; nanobubble water Strain(s): 144, 2199 PubMed: 31619633 DOI: 10.3177/jnsv.65.S212 Ghosh, R., Makam, R., Krishnamurthy, V. 2018 Effect of critical parameters on biomass yield from Botryococcus braunii by Response surface methodology. Chem. Sci. Rev. Lett., 7, 409-420. Keywords: Bio mass; Botryococcus Braunii; Microalgae; Response; Surface Methodology Strain(s): 2199 Huang, Y-T., Lai, C-W., Wu, B-W., Lin, K-S., Wu, J.C.S., Md Shahriar A Hossain, Yamauchi, Y., Wu, C.-W. 2017 Advances in bioconversion of microalgae with high biomass and lipid productivity. J. Taiwan Inst. Chem. Eng., 79, 37-42. Keywords: Bioconversion; Fatty acid; methyl esters; Illumination; Microalgae Strain(s): 2199 DOI: 10.1016/j.jtice.2017.05.026 Nogami, R., Ushijima, K., Nishida, H., Wakisaka, M. 2017 Enhancement of growth and lipid production of Botryococcus braunii by steel slags. J. Jpn. Inst. Energy, 96, 372-375 (in Japanese with English summary). Keywords: Botryococcus braunii; Blast furnace slag; Growth promotion; Lipid production; Steelmaking slag Strain(s): 2199 DOI: 10.3775/jie.96.372 Hamana, K., Niitsu, M., Hayashi, H. 2013 Occurrence of homospermidine and thermospermine as a cellular polyamine in unicellular chlorophyte and multicellular charophyte green algae J. Gen. Appl. Micobiol., 59, 313-319. Keywords: green alga; homospermidine; polyamine; thermospermine Strain(s): 18, 151, 160, 255, 296, 306, 360, 363, 640, 722, 836, 1409, 1410, 1411, 1419, 1837, 2164, 2199, 3374 PubMed: 24005181 DOI: 10.2323/jgam.59.313 Huang, Y., Lee, H., Lai, C. 2013 Engineering of the growth environment of microalgae with high biomass and lipid productivity. J. Nanosci. Nanotechnol., 13, 2117-2121. Keywords: Microalgae; Cultivation Environment; Carbon Dioxide; Biomass Productivity; Lipid Productivity Strain(s): 2199 DOI: 10.1166/jnn.2013.6877 Honda, R., Boonnorat, J., Chiemchaisri, C., Chiemchaisri, w., Yamamoto, K. 2012 Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresour. Technol., 125, 59-64. Keywords: Carbon dioxide capture; Nutrients removal; Membrane photobioreactor; Microalgae; Botryococcus braunii Strain(s): 2199 PubMed: 23023237 DOI: 10.1016/j.biortech.2012.08.138 |
Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.