A big image opens when the thumbnail is clicked.(nies-2145.jpg)
Strain number NIES-2145  
Phylum Heterokontophyta  
Class Eustigmatophyceae  
Scientific name Nannochloropsis oceanica Suda & Miyashita  
Synonym  
Former name Formerly identified as Nannochloropsis oculata (Droop) Hibberd, re-identified by DNA analysis[2017]  
Common name  
Locality (Date of collection)  
Latitude / Longitude  
Habitat (Isolation source) Marine  
History < IAM (2007) < Hara, Yoshiaki (1988) < Suisan Center of Fukushima Prefecture  
Isolator (Date of isolation)  
Identified by  
State of strain Subculture / Cryopreservation; Unialgal; Clonal; Axenic[2021 Nov]  
Culture condition
(Preculture condition)
Medium:  ESMESM (agar)  
Temperature:  20 C
Light intensity:  21 µmol photons/m2/sec, L/D cycle:  10L:14D
Duration:  1 M (liquid); 4 M (agar)  
Gene information 18S rRNA ( LC730856 ) , BTA1S mRNA ( LC375791 ) , BTA1L mRNA ( LC375792 ) , CCT1 mRNA ( LC375794 ) , PECT1 mRNA ( LC375793 ) , NoNR mRNA ( LC514673 ) , NoPHT1b mRNA ( LC532739 ) , NoPHT1c mRNA ( LC532740 ) , NoPSR1 mRNA ( LC532100 ) , NoPSL1 mRNA ( LC532101 ) , NoPSL2 mRNA ( LC532102 ) , NoPHT1a mRNA ( LC532103 )  
Cell size (min - max)  
Organization Unicellular 
Characteristics oil (hydrocarbon) production ; TAG (Nobusawa et al.)  
Other strain no. Other collection strain no. : IAM ST-4
 
Remarks Cryopreserved; Axenic 
Movie  
Reference
Nagi, G. K., Goel, M., Tiwari, R., Bhawna, Gaur, S., Mallick, N., Mandal, S. 2023 Simultaneous production of bio-crude bio-oil via hydrothermal liquefaction and carotenoids via supercritical extraction from Nannochloropsis oceanica and recycling effluent to establish circular processes. J. Clean Prod., 428, 13945 (article ID).
Keywords: Algal biofuels; Biorefinery; Circular bioeconomy; Hydrothermal liquefaction; Microalgae; Nannochloropsis oceanica
Strain(s): 2145 
DOI: 10.1016/j.jclepro.2023.139450

Yoshino, T., Mao, Y., Maeda, Y., Negishi, R., Murata, S., Moriya, S., Shimada, H., Arakaki, A., Kobayashi, K., Hagiwara, Y., Okamoto, K., Tanaka, T. 2022 Single-cell genotyping of phytoplankton from oceanwater by gel-based cellmanipulation. Biotechnol. J., 17, 2100633 (article ID).
Keywords: gel-based cell manipulation; microcavity array; phytoplankton; single-cell; whole genome amplificatio
Strain(s): 1443852145 
PubMed: 35195355
DOI: 10.1002/biot.202100633

Hamana, K., Furuchi, T., Hayashi, H., Niitsu, M. 2022 Additional polyamine analysis of algal chlorarachniophytes, euglenophytes, haptophytes, cryptophytes, dinoflagellates, chromerids and heterokontophytes. —Polyamine analysis of algae IV— Microb. Resour. Syst., 38, 51-62.
Keywords: alga; chlorarachniophyte; chromerid; dinoflagellate; polyamine
Strain(s): 124748253274276277282286304331381387463623624699706715741144321452146214923512433253525842588263526772716272828603576374540604109428043914392 

Tran, H.-D., Ong, B.-N., Ngo, V.-T., Tran, D.-L., Nguyen, T.-C., Tran-Rhi, B.-H., Do, T.-T., Nguyen, T.-M.-L., Nguyen, X.-H., Melkonian, M. 2022 New angled twin–layer porous substrate photobioreactors for cultivation of Nannochloropsis oculata. Protist, 173, 125914 (article ID).
Keywords: Nannochloropsis oculata; twin-layer porous substrate photobioreactor (TL-PSBR) systems; biomass; lipid LED
Strain(s): 2145 
PubMed: 36270076
DOI: 10.1016/j.protis.2022.125914

Matsui, H., Sugihara, S., Wada, M., Ozaki, T., Saitoh, T., Kotani, T. 2022 Application of genetic disruption of a Nannochloropsis oceanica cell wall synthesizing gene to n-3 HUFA enrichment of Brachionus plicatilis. Aquaculture, 552, 738022 (article ID).
Keywords: cesA1; Fish oil; Homologous recombination; Live feed; Photoautotrophic microalgae
Strain(s): 2145 
DOI: 10.1016/j.aquaculture.2022.738022

Kurita, T., Iwai, M., Moroi, K., Okazaki, K., Nomura, S., Saito, F., Maeda, S., Takami, A., Sakamoto, A., Ohta, H., Sakuma, T., Yamamoto, T. 2022 Genome editing with removable TALEN vectors harboring a yeast centromere and autonomous replication sequence in oleaginous microalga. Sci Rep, 12, 2480 (article ID).
Strain(s): 2145 
PubMed: 35169205
DOI: 10.1038/s41598-022-06495-y

Kurita, T., Moroi, K., Iwai, M., Okazaki, K., Shimizu, S., Nomura, S., Saito, F., Maeda, S., Takami, A., Sakamoto, A., Ohta, H., Sakuma, T., Yamamoto, T. 2020 Efficient and multiplexable genome editing using Platinum TALENs in oleaginous microalga, Nannochloropsis oceanica NIES-2145. Genes Cells, 25, 695-702.
Strain(s): 2145 
PubMed: 32888368
DOI: 10.1111/gtc.12805

Fitriyah, F., Faramitha, Y., Sari, D. A., Kresnawaty, I., Panji, T., Santoso, D. 2020 Molecular identification of species in genus Nannochloropsis using Ribulose-1,5-Biphosphate carboxylase/oxygenase large subunit (rbcL) gene barcode. Eurasia. J. Biosci., 14, 7855-7860.
Keywords: DNA barcode; Microalgae; rbcL
Strain(s): 21452587 

Murakami, H., Kakutani, N., Kuroyanagi, Y., Iwai, M., Hori, K., Shimojima, M., Ohta, H. 2020 MYB-like transcription factor NoPSR1 is crucial for membrane lipid remodeling under phosphate starvation in the oleaginous microalga Nannochloropsis oceanica. FEBS Lett., 594, 3384-3394.
Keywords: membrane lipid; Nannochloropsis oceanica; phosphate starvation; transcription factor
Strain(s): 2145 
PubMed: 32770739
DOI: 10.1002/1873-3468.13902

Saito, T., Ichihara, T., Inoue, H., Uematsu, T., Hamada, S., Watanabe, T., Takimura, Y., Webb, J. 2020 Comparison of areal productivity of Nannochloropsis oceanica between lab-scale and industrial-scale raceway pond. Mar. Biotechnol., 22, 836–841.
Keywords: Microalgae production; Nannochloropsis; Open raceway pond; Sequential batch culture
Strain(s): 2145 
PubMed: 32860094
DOI: 10.1007/s10126-020-09990-3

Komatsu, K., Onouchi, H., Imai, A., Kawasaki, N., Hashim, E. F., Mohd Rajuddin, M. K. 2019 Effects of dissolved organic matter in soil extracts on the growth of microalgae. J. Jpn. Soc. Wat. Environ., 42, 239-246 (in Japanese with English summary).
Keywords: Soil extracts; Microalgae; Microplate technique; Excitation emission matrix; Molecular size distribution
Strain(s): 39214521682170225622572258 
DOI: 10.2965/jswe.42.239

Nobusawa, T., Yamakawa-Ayukawa, K., Saito, F., Nomura, S., Takami, A., Ohta, H. 2019 A homolog of Arabidopsis SDP1 lipase in Nannochloropsis is involved in degradation of de novo-synthesized triacylglycerols in the endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1864, 1185-1193.
Keywords: Nannochloropsis; Lipase; Triacylglycerol; SDP1
Strain(s): 2145 
PubMed: 31152796
DOI: 10.1016/j.bbalip.2019.05.013

Sugihara, S., Ozaki, T., Tojo, T., Endo, H., Saito, T., Takimura, Y. 2019 Identification of novel 3-ketoacyl-acyl carrier protein synthase involved in producing medium chain fatty acids from microalgae. Bioresour. Technol. Reports, 7, 100184 (article ID).
Keywords: 3-ketoacyl ACP synthase; Medium chain fatty acid; Microalgae; Nannochloropsis
Strain(s): 2145 
DOI: 10.1016/j.biteb.2019.03.016

Shimakawa, G., Murakami, A., Niwa, K., Matsuda, Y., Wada, A., Miyake, C. 2019 Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs. Photosynth. Res., 139, 401–411.
Keywords: Reactive oxygen species; P700 oxidation; Photosystem I; Seaweeds
Strain(s): 7051959213821452147 
PubMed: 29845382
DOI: 10.1007/s11120-018-0522-z

Murakami, H., Nobusawa, T., Hori, K., Shimojima, M., Ohta, H. 2018 Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant Physiol., 177, 181–193.
Strain(s): 2145 
PubMed: 29555786
DOI: 10.1104/pp.17.01573

Pollner, E., Farré, E. M., Bennlng, C. 2018 Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. Plant Cell Reports, 37, 1383-1399.
Keywords: Nannochloropsis; Algal biotechnology; Marker-free engineering; Gene stacking; Synthetic biology; Episomes
Strain(s): 21452146 
PubMed: 29511798
DOI: 10.1007/s00299-018-2270-0

Mitani, E., Nakayama, F., Matsuwaki, I., Ichi, I., Kawabata, A., Kawachi, M., Kato, M. 2017 Fatty acid composition profiles of 235 strains of three microalgal divisions within the NIES Microbial Culture Collection. Microb. Resour. Syst., 33, 19-29.
Keywords: Cryptophyta; docosahexaenoic acid; eicosapentaenoic acid; fatty acid; Haptophyta; Heterokontophyta; microalgae
Strain(s): 1891415177111522322523323426527427527627727827928028128228429332332433033334434534634734835035337237738839139540740840941341441746146246648753454855355655755855956056258758858959060360562262369569669769869970070170270370470570670770870971071171271371471571674176576676780583799710011002100310041005100610071009101110161017104410451046104713021303132413271330133913401349135313701375137613791383138413851386138713911392139313951398139914001401169917001730181318151816182618271831186218631864186518741963196419651974197519762142214321442145214721482300233123322351236323642365236923702376250625332534253525362537259026332668268926902691269326942696269727072716271727182720272227232725272627292730273127322770277127722773283928402841284228432844285928722878289028993391368936903691 

Nobusawa, T., Hori, K., Mori, H., Kurokawa, K., Ohta, H. 2017 Differently localized lysophosphatidic acid acyltransferasescrucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis. Plant J., 90, 547–559.
Keywords: Nannochloropsis; triacylglycerol (TAG); biofuels; lysophosphatidic acid acyltransferase (LPAT); lipid droplets
Strain(s): 2145 
PubMed: 28218992
DOI: 10.1111/tpj.13512

Iwai, M., Hori, K., Sasaki-Sekimoto, Y., Shimojima, M., Ohta, H. 2015 Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii. Front. Microbiol. 6, 912 (article ID).
Keywords: algae; Nannochloropsis; phosphorus starvation; inducible promoter; triacylglycerol
Strain(s): 2145 
PubMed: 26441858
DOI: 10.3389/fmicb.2015.00912

Nakanishi, K., Deuchi, K., Kuwano, K. 2012 Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. J. Appl. Phycol., 24, 1381-1385.
Keywords: Cryopreservation; Cryoprotectant; Chlorella vulgaris; Nannochloropsis oculata; Tetraselmis tetrathele; Chlorophyll
Strain(s): 21452170 
DOI: 10.1007/s10811-012-9790-8

Sharifah, E. N. & Eguchi, M. 2011 The phytoplankton Nannochloropsis oculata enhances the ability ofRoseobacter clade bacteria to inhibit the growth of Vibrio anguillarum. PLoS One, 6, e26756 (article ID).
Strain(s): 2145 
PubMed: 22053210
DOI: 10.1371/journal.pone.0026756

Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.

page-top