Strain number | NIES-2145 | |||
---|---|---|---|---|
Phylum | Heterokontophyta | |||
Class | Eustigmatophyceae | |||
Scientific name | Nannochloropsis oceanica Suda & Miyashita | |||
Synonym | ||||
Former name | Formerly identified as Nannochloropsis oculata (Droop) Hibberd, re-identified by DNA analysis[2017] | |||
Common name | ||||
Locality (Date of collection) | ||||
Latitude / Longitude | ||||
Habitat (Isolation source) | Marine | |||
History | < IAM (2007) < Hara, Yoshiaki (1988) < Suisan Center of Fukushima Prefecture | |||
Isolator (Date of isolation) | ||||
Identified by | ||||
State of strain | Subculture / Cryopreservation; Unialgal; Clonal; Axenic[2021 Nov] | |||
Culture condition (Preculture condition) |
Medium:
ESM
;
ESM (agar)
Temperature: 20 C Light intensity: 21 µmol photons/m2/sec, L/D cycle: 10L:14D Duration: 1 M (liquid); 4 M (agar) |
|||
Gene information | 18S rRNA ( LC730856 ) , BTA1S mRNA ( LC375791 ) , BTA1L mRNA ( LC375792 ) , CCT1 mRNA ( LC375794 ) , PECT1 mRNA ( LC375793 ) , NoNR mRNA ( LC514673 ) , NoPHT1b mRNA ( LC532739 ) , NoPHT1c mRNA ( LC532740 ) , NoPSR1 mRNA ( LC532100 ) , NoPSL1 mRNA ( LC532101 ) , NoPSL2 mRNA ( LC532102 ) , NoPHT1a mRNA ( LC532103 ) | |||
Cell size (min - max) | ||||
Organization | Unicellular | |||
Characteristics | oil (hydrocarbon) production ; TAG (Nobusawa et al.) | |||
Other strain no. |
Other collection strain no. : IAM ST-4
|
|||
Remarks | Cryopreserved; Axenic | |||
Movie |
Reference |
---|
Nagi, G. K., Goel, M., Tiwari, R., Bhawna, Gaur, S., Mallick, N., Mandal, S.
2023
Simultaneous production of bio-crude bio-oil via hydrothermal liquefaction and carotenoids via supercritical extraction from Nannochloropsis oceanica and recycling effluent to establish circular processes.
J. Clean Prod.,
428,
13945 (article ID).
Keywords: Algal biofuels; Biorefinery; Circular bioeconomy; Hydrothermal liquefaction; Microalgae; Nannochloropsis oceanica Strain(s): 2145 DOI: 10.1016/j.jclepro.2023.139450 Yoshino, T., Mao, Y., Maeda, Y., Negishi, R., Murata, S., Moriya, S., Shimada, H., Arakaki, A., Kobayashi, K., Hagiwara, Y., Okamoto, K., Tanaka, T. 2022 Single-cell genotyping of phytoplankton from oceanwater by gel-based cellmanipulation. Biotechnol. J., 17, 2100633 (article ID). Keywords: gel-based cell manipulation; microcavity array; phytoplankton; single-cell; whole genome amplificatio Strain(s): 144, 385, 2145 PubMed: 35195355 DOI: 10.1002/biot.202100633 Hamana, K., Furuchi, T., Hayashi, H., Niitsu, M. 2022 Additional polyamine analysis of algal chlorarachniophytes, euglenophytes, haptophytes, cryptophytes, dinoflagellates, chromerids and heterokontophytes. —Polyamine analysis of algae IV— Microb. Resour. Syst., 38, 51-62. Keywords: alga; chlorarachniophyte; chromerid; dinoflagellate; polyamine Strain(s): 12, 47, 48, 253, 274, 276, 277, 282, 286, 304, 331, 381, 387, 463, 623, 624, 699, 706, 715, 741, 1443, 2145, 2146, 2149, 2351, 2433, 2535, 2584, 2588, 2635, 2677, 2716, 2728, 2860, 3576, 3745, 4060, 4109, 4280, 4391, 4392 Tran, H.-D., Ong, B.-N., Ngo, V.-T., Tran, D.-L., Nguyen, T.-C., Tran-Rhi, B.-H., Do, T.-T., Nguyen, T.-M.-L., Nguyen, X.-H., Melkonian, M. 2022 New angled twin–layer porous substrate photobioreactors for cultivation of Nannochloropsis oculata. Protist, 173, 125914 (article ID). Keywords: Nannochloropsis oculata; twin-layer porous substrate photobioreactor (TL-PSBR) systems; biomass; lipid LED Strain(s): 2145 PubMed: 36270076 DOI: 10.1016/j.protis.2022.125914 Matsui, H., Sugihara, S., Wada, M., Ozaki, T., Saitoh, T., Kotani, T. 2022 Application of genetic disruption of a Nannochloropsis oceanica cell wall synthesizing gene to n-3 HUFA enrichment of Brachionus plicatilis. Aquaculture, 552, 738022 (article ID). Keywords: cesA1; Fish oil; Homologous recombination; Live feed; Photoautotrophic microalgae Strain(s): 2145 DOI: 10.1016/j.aquaculture.2022.738022 Kurita, T., Iwai, M., Moroi, K., Okazaki, K., Nomura, S., Saito, F., Maeda, S., Takami, A., Sakamoto, A., Ohta, H., Sakuma, T., Yamamoto, T. 2022 Genome editing with removable TALEN vectors harboring a yeast centromere and autonomous replication sequence in oleaginous microalga. Sci Rep, 12, 2480 (article ID). Strain(s): 2145 PubMed: 35169205 DOI: 10.1038/s41598-022-06495-y Kurita, T., Moroi, K., Iwai, M., Okazaki, K., Shimizu, S., Nomura, S., Saito, F., Maeda, S., Takami, A., Sakamoto, A., Ohta, H., Sakuma, T., Yamamoto, T. 2020 Efficient and multiplexable genome editing using Platinum TALENs in oleaginous microalga, Nannochloropsis oceanica NIES-2145. Genes Cells, 25, 695-702. Strain(s): 2145 PubMed: 32888368 DOI: 10.1111/gtc.12805 Fitriyah, F., Faramitha, Y., Sari, D. A., Kresnawaty, I., Panji, T., Santoso, D. 2020 Molecular identification of species in genus Nannochloropsis using Ribulose-1,5-Biphosphate carboxylase/oxygenase large subunit (rbcL) gene barcode. Eurasia. J. Biosci., 14, 7855-7860. Keywords: DNA barcode; Microalgae; rbcL Strain(s): 2145, 2587 Murakami, H., Kakutani, N., Kuroyanagi, Y., Iwai, M., Hori, K., Shimojima, M., Ohta, H. 2020 MYB-like transcription factor NoPSR1 is crucial for membrane lipid remodeling under phosphate starvation in the oleaginous microalga Nannochloropsis oceanica. FEBS Lett., 594, 3384-3394. Keywords: membrane lipid; Nannochloropsis oceanica; phosphate starvation; transcription factor Strain(s): 2145 PubMed: 32770739 DOI: 10.1002/1873-3468.13902 Saito, T., Ichihara, T., Inoue, H., Uematsu, T., Hamada, S., Watanabe, T., Takimura, Y., Webb, J. 2020 Comparison of areal productivity of Nannochloropsis oceanica between lab-scale and industrial-scale raceway pond. Mar. Biotechnol., 22, 836–841. Keywords: Microalgae production; Nannochloropsis; Open raceway pond; Sequential batch culture Strain(s): 2145 PubMed: 32860094 DOI: 10.1007/s10126-020-09990-3 Komatsu, K., Onouchi, H., Imai, A., Kawasaki, N., Hashim, E. F., Mohd Rajuddin, M. K. 2019 Effects of dissolved organic matter in soil extracts on the growth of microalgae. J. Jpn. Soc. Wat. Environ., 42, 239-246 (in Japanese with English summary). Keywords: Soil extracts; Microalgae; Microplate technique; Excitation emission matrix; Molecular size distribution Strain(s): 39, 2145, 2168, 2170, 2256, 2257, 2258 DOI: 10.2965/jswe.42.239 Nobusawa, T., Yamakawa-Ayukawa, K., Saito, F., Nomura, S., Takami, A., Ohta, H. 2019 A homolog of Arabidopsis SDP1 lipase in Nannochloropsis is involved in degradation of de novo-synthesized triacylglycerols in the endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1864, 1185-1193. Keywords: Nannochloropsis; Lipase; Triacylglycerol; SDP1 Strain(s): 2145 PubMed: 31152796 DOI: 10.1016/j.bbalip.2019.05.013 Sugihara, S., Ozaki, T., Tojo, T., Endo, H., Saito, T., Takimura, Y. 2019 Identification of novel 3-ketoacyl-acyl carrier protein synthase involved in producing medium chain fatty acids from microalgae. Bioresour. Technol. Reports, 7, 100184 (article ID). Keywords: 3-ketoacyl ACP synthase; Medium chain fatty acid; Microalgae; Nannochloropsis Strain(s): 2145 DOI: 10.1016/j.biteb.2019.03.016 Shimakawa, G., Murakami, A., Niwa, K., Matsuda, Y., Wada, A., Miyake, C. 2019 Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs. Photosynth. Res., 139, 401–411. Keywords: Reactive oxygen species; P700 oxidation; Photosystem I; Seaweeds Strain(s): 705, 1959, 2138, 2145, 2147 PubMed: 29845382 DOI: 10.1007/s11120-018-0522-z Murakami, H., Nobusawa, T., Hori, K., Shimojima, M., Ohta, H. 2018 Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant Physiol., 177, 181–193. Strain(s): 2145 PubMed: 29555786 DOI: 10.1104/pp.17.01573 Pollner, E., Farré, E. M., Bennlng, C. 2018 Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. Plant Cell Reports, 37, 1383-1399. Keywords: Nannochloropsis; Algal biotechnology; Marker-free engineering; Gene stacking; Synthetic biology; Episomes Strain(s): 2145, 2146 PubMed: 29511798 DOI: 10.1007/s00299-018-2270-0 Mitani, E., Nakayama, F., Matsuwaki, I., Ichi, I., Kawabata, A., Kawachi, M., Kato, M. 2017 Fatty acid composition profiles of 235 strains of three microalgal divisions within the NIES Microbial Culture Collection. Microb. Resour. Syst., 33, 19-29. Keywords: Cryptophyta; docosahexaenoic acid; eicosapentaenoic acid; fatty acid; Haptophyta; Heterokontophyta; microalgae Strain(s): 1, 8, 9, 14, 15, 17, 71, 115, 223, 225, 233, 234, 265, 274, 275, 276, 277, 278, 279, 280, 281, 282, 284, 293, 323, 324, 330, 333, 344, 345, 346, 347, 348, 350, 353, 372, 377, 388, 391, 395, 407, 408, 409, 413, 414, 417, 461, 462, 466, 487, 534, 548, 553, 556, 557, 558, 559, 560, 562, 587, 588, 589, 590, 603, 605, 622, 623, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 741, 765, 766, 767, 805, 837, 997, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1009, 1011, 1016, 1017, 1044, 1045, 1046, 1047, 1302, 1303, 1324, 1327, 1330, 1339, 1340, 1349, 1353, 1370, 1375, 1376, 1379, 1383, 1384, 1385, 1386, 1387, 1391, 1392, 1393, 1395, 1398, 1399, 1400, 1401, 1699, 1700, 1730, 1813, 1815, 1816, 1826, 1827, 1831, 1862, 1863, 1864, 1865, 1874, 1963, 1964, 1965, 1974, 1975, 1976, 2142, 2143, 2144, 2145, 2147, 2148, 2300, 2331, 2332, 2351, 2363, 2364, 2365, 2369, 2370, 2376, 2506, 2533, 2534, 2535, 2536, 2537, 2590, 2633, 2668, 2689, 2690, 2691, 2693, 2694, 2696, 2697, 2707, 2716, 2717, 2718, 2720, 2722, 2723, 2725, 2726, 2729, 2730, 2731, 2732, 2770, 2771, 2772, 2773, 2839, 2840, 2841, 2842, 2843, 2844, 2859, 2872, 2878, 2890, 2899, 3391, 3689, 3690, 3691 Nobusawa, T., Hori, K., Mori, H., Kurokawa, K., Ohta, H. 2017 Differently localized lysophosphatidic acid acyltransferasescrucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis. Plant J., 90, 547–559. Keywords: Nannochloropsis; triacylglycerol (TAG); biofuels; lysophosphatidic acid acyltransferase (LPAT); lipid droplets Strain(s): 2145 PubMed: 28218992 DOI: 10.1111/tpj.13512 Iwai, M., Hori, K., Sasaki-Sekimoto, Y., Shimojima, M., Ohta, H. 2015 Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii. Front. Microbiol. 6, 912 (article ID). Keywords: algae; Nannochloropsis; phosphorus starvation; inducible promoter; triacylglycerol Strain(s): 2145 PubMed: 26441858 DOI: 10.3389/fmicb.2015.00912 Nakanishi, K., Deuchi, K., Kuwano, K. 2012 Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. J. Appl. Phycol., 24, 1381-1385. Keywords: Cryopreservation; Cryoprotectant; Chlorella vulgaris; Nannochloropsis oculata; Tetraselmis tetrathele; Chlorophyll Strain(s): 2145, 2170 DOI: 10.1007/s10811-012-9790-8 Sharifah, E. N. & Eguchi, M. 2011 The phytoplankton Nannochloropsis oculata enhances the ability ofRoseobacter clade bacteria to inhibit the growth of Vibrio anguillarum. PLoS One, 6, e26756 (article ID). Strain(s): 2145 PubMed: 22053210 DOI: 10.1371/journal.pone.0026756 |
Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.