Strain number NIES-2549  
Phylum Cyanophyta  
Class Cyanophyceae  
Scientific name Microcystis aeruginosa (Kützing) Lemmermann  
Synonym Microcystis ichthyoblabe Kützing; Microcystis novacekii (Komárek) Compère; Microcystis viridis (A.Brown) Lemmermann; Microcystis wesenbergii Komárek  
Former name  
Common name Blue-green alga ; Cyanobacteria  
Locality (Date of collection) Lake Kasumigaura, Omitama, Ibaraki, Japan (2005-07-17)  
Latitude / Longitude 36.16083333 / 140.31361111 
Habitat (Isolation source) Freshwater (Lake water)  
History < Tanabe, Yuuhiko  
Isolator (Date of isolation) Tanabe, Yuuhiko (2005-07-25)  
Identified by Tanabe, Yuuhiko  
State of strain Cryopreservation; Unialgal; Clonal; Axenic[2015 Feb]  
Culture condition
(Preculture condition)
Medium:  MA  
Temperature:  20 C
Light intensity:  15-25 µmol photons/m2/sec, L/D cycle:  10L:14D
Duration:  1 M  
Gene information Whole-genome ( CP011304 )  
Cell size (min - max)  
Organization  
Characteristics Cyanobacterial water bloom (aoko) ; Indicator ; ST120 (Tanabe et al. 2009a) ; Genome decoded strain (Yamaguchi et al. 2015)  
Other strain no. Other strain no. : Ks05TA38  
Remarks Cryopreserved; Axenic 
Movie  
Reference
Cao, H., Xu, D., Zhang, T., Ren, Q., Xiang, L., Ning, C., Zhang, Y., Gao, R. 2022 Comprehensive and functional analyses reveal the genomic diversity and potential toxicity of Microcystis. Harmful Algae, 113, 102186 (article ID).
Keywords: Microcystis; Pangenome; Toxicity; Diversity; Classification
Strain(s): 8810229884324812549 
PubMed: 35287927
DOI: 10.1016/j.hal.2022.102186

Giordano, M., Goodman, C. A., Huang, F., Raven, J. A., Ruan, Z. 2022 A mechanistic study of the influence of nitrogen and energy availability on the NH4+ sensitivity of nitrogen assimilation in Synechococcus. J. Exp. Bot., 73, 5596-5611.
Keywords: Ammonium; cyanobacteria; glutamine synthetase; limitation; nitrate reductase; nitrite reductase; NtcA regulation; N metabolism
Strain(s): 25502042678439709812107213421352481254937093754375637574074 
PubMed: 35595516
DOI: 10.1093/jxb/erac219

Valadez-Cano, C., Hawkes, K., Calvaruso, R., Reyes-Prieto, A., Lawrence, J. 2022 Amplicon-based and metagenomic approaches provide insights into toxigenic potential in understudied Atlantic Canadian lakes Facets, 7, 194-214.
Keywords: Toxic cyanobacteria; toxic blooms, cyanotoxins; microcystin; Microcystis aeruginosa; bioactive metabolites
Strain(s): 8432549 
DOI: 10.1139/facets-2021-0109

MacCready, J. S., Basalla, J. L., Vecchiarelli, A. G. 2020 Origin and evolution of carboxysome positioning systems in cyanobacteria. Mol. Biol. Evol., 37, 1434–1451.
Strain(s): 212225263039447387882675928068439329702098210021072108211125493275375437563974407340744075410141034106 
PubMed: 31899489
DOI: 10.1093/molbev/msz308

Chen, M., Tian, L.-L., Ren, C.-Y., Xu, C.-Y., Wang, Y.-Y., Li, L. 2019 Extracellular polysaccharide synthesis in a bloom-forming strain of Microcystis aeruginosa: implications for colonization and buoyancy. Sci Rep, 9, 1251 (article ID).
Strain(s): 87889820429884324812549 
PubMed: 30718739
DOI: 10.1038/s41598-018-37398-6

Tanabe, Y., Hodoki, Y., Sano, T., Tada, K., Watanabe, MM. 2018a Adaptation of the freshwater bloom-forming cyanobacterium Microcystis aeruginosa to brackish water is driven by recent horizontal transfer of sucrose genes. Front. Microbiol., 9, 1150 (article ID).
Keywords: Microcystis; bloom; salt tolerance; sucrose; genomics; brackish water; horizontal gene trasnfer; ecotype
Strain(s): 4487888990919899100101102103104105107108109112298299478604843901105010521059106310671069107010751076108510931094109811001101110211041105110611071108111311141115112211281130113111321134113911411142114311441150117011741175117611771179118111831185121112131214121512321234123812391252208820902091246524662467246824692470247124722473247524762477247824792480248124822483248424852486248724882489249024912492249424952546254725482549255025512552255325542555255625572558255925602561259225942595259625972598259926002601260226032604260526062607260826102611261226132617261826192620262126222623262426252626262826294234 
PubMed: 29922255
DOI: 10.3389/fmicb.2018.01150

Klemenčič, M., Funk, C. 2018 Structural and functional diversity of caspase homologues in non-metazoan organisms. Protoplasma, 255, 387-397.
Strain(s): 448432549 
PubMed: 28744694
DOI: 10.1007/s00709-017-1145-5

Lin, W., Zhao, D., Luo, J. 2018 Distribution of alkaline phosphatase genes in cyanobacteria and the role of alkaline phosphatase on the acquisition of phosphorus from dissolved organic phosphorus for cyanobacterial growth. J. Appl. Phycol., 30, 839-850.
Keywords: Alkaline; phosphatase; Cyanobacteria; Dissolved organic phosphorus; Distribution
Strain(s): 303981213025493756 
DOI: 10.1007/s10811-017-1267-3

Zhao, L., Song, Y., Li, L., Gan, N., Brand, JJ., Song, L. 2018 The highly heterogeneous methylated genomes and diverserestriction-modification systems of bloom-forming Microcystis. Harmful Algae, 75, 87-93.
Keywords: Cyanobacterial bloom; DNA methylation modification; Epigenetics; Methyltransferase; Microcystis; SMRT
Strain(s): 8432549 
PubMed: 29778228
DOI: 10.1016/j.hal.2018.04.005

Yamaguchi, H., Suzuki, S., Tanabe, Y., Osana, Y., Shimura, Y., Ishida, K-I., Kawachi, M. 2015 Complete genome sequence of Microcystis aeruginosa NIES-2549, a bloom-forming cyanobacterium from lake Kasumigaura, Japan. GenomeA, 3, e00551-15 (article ID).
Strain(s): 2549 
PubMed: 26021928
DOI: 10.1128/genomeA.00551-15

Tanabe, Y. & Watanabe, M. M. 2011 Local expansion of a panmictic lineage of water bloom-forming cyanobacterium Microcystis aeruginosa. PLoS One, 6, e17085 (article ID).
Strain(s): 4487888990919899100101102103104105106107108109110111112298299478604843901105010511052105310541055105610571058105910601061106210631064106510661067106810691070107210751076107710851090109110921093109410951096109710981100110111021103110411051106110711081113111411151122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311551156115711591160116111621163116411701171117211731174117511761177117911801181118311841185118612091211121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245125112521253125420882089209020912465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249625422543254425452546254725482549255025512552255325542555255625572558255925602561259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132617261826192620262126222623262426252626262726282629 
PubMed: 21390221
DOI: 10.1371/journal.pone.0017085

Tanabe, Y. 2010 "Biological species recognition" within the toxic cyanobacterium Microcystis. IFO Res. Commun., 24, 69-79 (in Japanese with English summary).
Keywords: Microcystis; MLST; microcystin synthetase; recombination; biological species recognition
Strain(s): 2465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249625422543254425452546254725482549255025512552255325542555255625572558255925602561259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132617261826192620262126222623262426252626262726282629 

Tanabe, Y., Kasai, F., Watanabe, M. M. 2009a Fine-scale spatial and temporal genetic differentiation of water bloom-forming cyanobacterium Microcystis aeruginosa: revealed by multilocus sequence typing. Environ. Microbiol. Rep., 1, 575-582.
Strain(s): 2469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496254625472548254925502551255225532554255525562557255825592560256125922593259426172618 
PubMed: 23765937
DOI: 10.1111/j.1758-2229.2009.00088.x

Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.

page-top