Zzzbe
2022
Chapter 2 - Specialized metabolites from cyanobacteria and their biological activities.
In The Pharmacological Potential of Cyanobacteria, Eds. by Lopes, G., Silva, M., Vasconcelos, V., Academic press
pp. 21-54.
Keywords: Kumla, D., Sousa, M. E., Vasconcelos, V., Kijjoa, A. Strain(s): 88 DOI: 10.1016/B978-0-12-821491-6.00002-8 |
Zahradníková, M.
2017
Taxonomy and phylogeny of the family Fuscideaceae (Umbilicariales, Ascomycota) with special emphasis on Fuscidea.
PhD thesis, University of Bergen, Norway,
196 pp.
Strain(s): 640, 2150, 2342, 2352 |
Zarenezhad, S., Sano, T., Watanabe, M. M., Kawachi, M.
2012
Evidence of the existence of a toxic form of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in Japan.
Phycol. Res.,
60,
98-104.
Keywords: cyanobacteria; Cylindrospermopsis raciborskii; deoxy-cylindrospermopsin; distribution Strain(s): 992, 3583 DOI: 10.1111/j.1440-1835.2012.00639.x |
Zehr, J. P., Ohki, K., Fujita, Y.
1991
Arrangement of nitrogenase structural genes in an aerobic filamentous nonheterocystous cyanobacterium.
J. Bacteriol.,
173,
7055-7058.
Strain(s): 3600 PubMed: 1938909 DOI: 10.1128/jb.173.21.7055-7058.1991 |
Zehr, J. P., Ohki, K., Fujita, Y., Landry, D.
1991
Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067.
J. Bacteriol.,
173,
7059-7062.
Strain(s): 3600 PubMed: 1657876 DOI: 10.1128/jb.173.21.7059-7062.1991 |
Zeng, Y., Wang, J., Yang, C., Ding, M., Hamilton, P. B., Zhang, X., Yang, C., Zhnang, L., Dai, X.
2021
A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact.
Sci. Total Environ.,
769,
144489 (article ID).
Keywords: Microcystis aeruginosa; Algicidal activity; Predator and prey; Streptomyces Strain(s): 44, 90, 843 PubMed: 33465632 DOI: 10.1016/j.scitotenv.2020.144489 |
Zepernick, B. N., Gann, E. R., Martin, R. M., Pound, H. L., Krausfeldt, L. E., Chaffin, J. D., Wilhelm, S. W.
2021
Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie.
Front. Microbiol.,
12,
598736 (article ID).
Keywords: CyanoHABs; Lake Erie; biogenic silica; diatoms; lake alkalinity; microcystis blooms Strain(s): 843 PubMed: 33717001 DOI: 10.3389/fmicb.2021.598736 |
Zha, J., Steglich, C., Scholz, I., Hess, W. R., Kirilovsky, D.
2021
Inverse regulation of light harvesting and photoprotection is mediated by a 3' end-derived sRNA in cyanobacteria.
Plant Cell,
33,
358-380.
Strain(s): 73, 806, 2134 PubMed: 33793852 DOI: 10.1093/plcell/koaa030 |
Zha, S., Liang, Y., Oda, T., Ishibashi, F.
2020
Bioactivities of algicidal C18 hydroxy unsaturated fatty acid isolated from the red alga Tricleocarpa jejuensis and its synthesized propargylic derivative.
Algal Res.,
52,
102097 (article ID).
Keywords: Tricleocarpa jejuensis; C18 hydroxy unsaturated fatty acid; Red tide phytoplankton; Algicidal activity; Antibacterial activity; Cytotoxicity Strain(s): 1, 3621 DOI: 10.1016/j.algal.2020.102097 |
Zhang, C., Chen, G., Wang, Y., Guo, C., Zhou, J.
2018
Physiological and molecular responses of Prorocentrum donghaiense to dissolved inorganic phosphorus limitation.
Mar. Pollut. Bull.,
129,
562-572.
Keywords: Prorocentrum donghaiense; Dissolved inorganic phosphorus; Limitation; Suppression subtractive hybridization; Molecular response Strain(s): 144 PubMed: 29055559 DOI: 10.1016/j.marpolbul.2017.10.031 |
Zhang, H., Meng, G., Mao, F., Li, W., He, Y., Gin, K. Y.-H., Ong, C. N.
2019
Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa.
J. Hazard. Mater.,
367,
120-127.
Keywords: Metabolomics; Mass spectrometry; Algaecides; Mechanisms; Untargeted analysis Strain(s): 843 PubMed: 30594710 DOI: 10.1016/j.jhazmat.2018.12.069 |
Zhang, K., Wan, M., Bai, W., Bao, Z., Duan, X., Wang, W., Fan, F., Li, Y.
2024
A novel heterotrophic cultivation process of Euglena gracilis based on NaCl stress significantly increases the paramylon production.
Algal Res.,
78,
103391 (article ID).
Strain(s): 48 DOI: 10.1016/j.algal.2024.103391 |
Zhang, L., Fan, Y., Shi, F., Qin, S., Liu, B.
2012
Molecular cloning, characterization, and expression analysis of a cytosolic HSP90 gene from Haematococcus pluvialis.
J. Appl. Phycol.,
24,
1601-1612.
Keywords: Haematococcus pluvialis; Heat shock protein 90; cDNA cloning; qRT-PCR; mRNA expression Strain(s): 144 DOI: 10.1007/s10811-012-9821-5 |
Zhang, P., MacTavish, B. S., Yang, G., Chen, M., Roh, J., Newsome, K. R., Bruner, S. D., Ding, Y.
2020
Cyanobacterial dihydroxyacid dehydratases are a promising growth inhibition target.
ACS Chem. Biol.,
15,
2281–2288.
Strain(s): 298 PubMed: 32786290 DOI: 10.1021/acschembio.0c00507 |
Zhang, S.-S., Xiong, J., Cui, J.-J., Ma, K.-L., Wu, W.-L., Li, Y., Luo, S., Gao, K., Dong, S.-H.
2022
Lanthipeptides from the same core sequence: Characterization of a class II lanthipeptide synthetase from Microcystis aeruginosa NIES-88.
Org. Lett.,
24,
2226–2231.
Strain(s): 88 PubMed: 35293207 DOI: 10.1021/acs.orglett.2c00573 |
Zhang, X., Ohtsuki, H., Makino, W., Kato, Y., Watanabe, H., Urabe, J.
2021
Variations in effects of ectosymbiotic microbes on the growth rates among different species and genotypes of Daphnia fed different algal diets.
Ecol. Res.,
36,
303-312.
Strain(s): 2364 DOI: 10.1111/1440-1703.12194 |
Zhang, X., Song, L., Zhang, P., He, J., Liu, Y., Matsuura, H., Watanabe, M. M.
2012
Grazing on toxic cyanobacterial blooms by tadpoles of edible frong Rana grylio.
Phycol. Res.,
60,
20-26.
Keywords: blue-green algae, cyanobacterial bloom; grazing; microcystin; Microcystis; pond; tadpole; trophic relationship Strain(s): 90 DOI: 10.1111/j.1440-1835.2011.00627.x |
Zhang, Z., Qu, C., Yao, R., Nie, Y., Xu, C., Miao, J., Zhong, B.
2019
The parallel molecular adaptations to the Antarctic cold environment in two psychrophilic green algae.
Genome Biol. Evol.,
11,
1897-1908.
Keywords: Antarctic; psychrophilic green algae; positive selection, molecular convergence; adaptation Strain(s): 691 PubMed: 31106822 DOI: 10.1093/gbe/evz104 |
Zhang, Z., Wang, B., Hu, Q., Sommerfeld, M., Li, Y., Han, D.
2016
A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis.
Biotech. Bioeng.,
113,
2088-2099.
Keywords: astaxanthin; Haematococcus pluvialis; heterotrophy; acclimation Strain(s): 144 PubMed: 27563850 DOI: 10.1002/bit.25976 |
Zhao, L., Song, Y., Li, L., Gan, N., Brand, JJ., Song, L.
2018
The highly heterogeneous methylated genomes and diverserestriction-modification systems of bloom-forming Microcystis.
Harmful Algae,
75,
87-93.
Keywords: Cyanobacterial bloom; DNA methylation modification; Epigenetics; Methyltransferase; Microcystis; SMRT Strain(s): 843, 2549 PubMed: 29778228 DOI: 10.1016/j.hal.2018.04.005 |
Zhao, Y., Li, Z., Fan, Y., Santisouk, L., Lei, Z., Yuan, T., Shimizu, K., Utsumi, M.
2024
A preliminary test for nitrogen recovery potential of nitrogen fixing cyanobacteria and its granules treating wastewater containing different nitrogen species.
Chem. Eng. J.,
490,
151765 (article ID).
Keywords: Ammonia nitrogen; Biogranulation; Cyanobacteria; Nitrate nitrogen; Nitrogen fixation; Wastewater treatment Strain(s): 1726, 1728 DOI: 10.1016/j.cej.2024.151765 |
Zheng, S., Lee, V., Meza-Padilla, I., Nissimov, J. I.
2024
Antiviral discovery in toxic cyanobacteria: Low hanging fruit in the age of pandemics.
J. Phycol.,
60,
574-580.
Keywords: antiviral activity; cyanobacteria; Microcystis aeruginosa; ssRNA viruses; ssDNA viruses Strain(s): 298 PubMed: 38174634 DOI: 10.1111/jpy.13425 |
Zhou, L., Chen, G., Cui, N., Pan, Q., Song, X., Zou, G.
2019
Allelopathic effects on Microcystis aeruginosa and allelochemical identification in the cuture solutions of typical artificial floating-bed plants.
Bull. Environ. Contam. Toxicol.,
102,
115–121.
Keywords: Allelopathy; Cyperus alternifolius; Canna generalis; Microcystis aeruginosa; Allelochemicals Strain(s): 44 PubMed: 30483838 DOI: 10.1007/s00128-018-2486-2 |
Zhou, S., Nakai, S., Hosomi, M., Sezaki, Y., Tominaga, M.
2004
Inhibition of cyanobacterial growth by allelopathy of reed.
Jpn. J. Water Treat. Biol.,
40,
23-28 (in Japanese with English summary).
Keywords: reed; Phormidium tenue; cyanobacteria; inhibition; allelopathy Strain(s): 512 DOI: 10.2521/jswtb.40.23 |
Zhou, W., Zhang, X., Wan, A., Yang, L., Gan, Q., Yi, L., Summons, R. E., Volkman, J. K., Lu, Y.
2022
Widespread sterol methyltransferase participates in the biosynthesis of both C4α- and C4β-methyl sterols.
J. Am. Chem. Soc.,
144,
9023-9032.
Strain(s): 3808 PubMed: 35561259 DOI: 10.1021/jacs.2c01401 |
Zhu, F., Massana, R., Not, F., Marie, D., Vaulot, D.
2005
Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene.
FEMS Microbiol. Ecol.,
52,
79-92.
Keywords: Coastal ecosystems; Ecology; Fluorescent in situ hybridization; Picoplankton; Prasinophytes; Quantitative PCR Strain(s): 2673, 2687 PubMed: 16329895 DOI: 10.1016/j.femsec.2004.10.006 |
Zhu, J. & Wakisaka, M.
2018
Growth promotion of Euglena gracilis by ferulic acid from rice bran.
AMB Express,
8,
16 (article ID).
Keywords: Euglena gracilis; Ferulic acid; Paramylon; Photosynthetic pigments Strain(s): 48 PubMed: 29423882 DOI: 10.1186/s13568-018-0547-x |
Zhu, J. & Wakisaka, M.
2019
Effect of air nanobubble water on the growth and metabolism of Haematococcus lacustris and Botryococcus braunii.
J. Nutr. Sci. Vitaminol.,
65,
S212-S216.
Keywords: Botryococcus braunii; Haematococcus lacustris; astaxanthin; lipid; nanobubble water Strain(s): 144, 2199 PubMed: 31619633 DOI: 10.3177/jnsv.65.S212 |
Zhu, J. & Wakisaka, M.
2020
Effect of two lignocellulose related sugar alcohols on the growth andmetabolites biosynthesis of Euglena gracilis.
Bioresour. Technol.,
303,
122950 (article ID).
Keywords: Euglena gracilis; Mannitol; Xylitol; Fourier transform infrared spectroscopy; Multivariate analy Strain(s): 48 PubMed: 32045866 DOI: 10.1016/j.biortech.2020.122950 |
Zhu, J. & Wakisaka, M.
2020
Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis.
Bioresour. Technol.,
296,
122343 (article ID).
Keywords: Euglena gracilis; Phytic acid; Fourier transform infrared spectroscopy; Multivariate analysis; Phytas Strain(s): 48 PubMed: 31711907 DOI: 10.1016/j.biortech.2019.122343 |
Zhu, J. & Wakisaka, M.
2021
Application of lignosulfonate as the growth promotor for freshwater microalga Euglena gracilis to increase productivity of biomass and lipids.
Fuel,
283,
118920 (article ID).
Keywords: Euglena gracilis; Lignosulfonates; Photosynthetic pigment; Lipid accumulation; Multivariate analysis Strain(s): 48 DOI: 10.1016/j.fuel.2020.118920 |
Zhu, J., Hong, D. D., Wakisaka, M.
2019
Phytic acid extracted from rice bran as a growth promoter for Euglena gracilis.
Open Chem.,
17,
57-63.
Keywords: phytic acid; Euglena gracilis; photosynthetic pigments; cell morphology Strain(s): 48 DOI: 10.1515/chem-2019-0006 |
Zhu, J., Tan, X., Hafid, H. S., Wakisaka, M.
2021
Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin.
Bioresour. Technol.,
321,
124441 (article ID).
Keywords: Euglena gracilis; Phenolic compounds; Lignin; Carotenoids; Lipid Strain(s): 48 DOI: 10.1016/j.biortech.2020.124441 |
Zhu, J., Tan, X., Hafid, H. S., Wakisaka, M.
2023
A novel strategy to promote microalgal growth and lipid productivity by supplementation of lignin related phenolic elicitors.
Fuel,
334,
126775 (article ID).
Keywords: Microalgae; Phenolic elicitors; Cell morphology; Photosynthesis; Lipids Strain(s): 48 DOI: 10.1016/j.fuel.2022.126775 |
Zhu, S., Feng, S., Xu, Z., Qin, L., Shang, C., Feng, P., Wang, Z., Yuan, Z.
2019
Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal.
Bioresour. Technol.,
285,
121353 (article ID).
Keywords: Liquid digestate; Biomass production; Lipid productivity; Wastewater treatment; Microbial community analysis Strain(s): 227 PubMed: 31005641 DOI: 10.1016/j.biortech.2019.121353 |
Zhu, S., Jiang, R., Qin, L., Huang, D., Yao, C., Xu, J., Wang, Z.
2022
Integrated strategies for robust growth of Chlorella vulgaris on undiluted dairy farm liquid digestate and pollutant removal.
Sci. Total Environ.,
852,
158518 (article ID).
Strain(s): 227 PubMed: 36063926 DOI: 10.1016/j.scitotenv.2022.158518 |
Zhu, S., Qin, L., Feng, P., Shang, C., Wang, Z., Yuan, Z.
2019
Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor.
Bioresour. Technol.,
274,
313-320.
Keywords: Microalgae; Activated sludge; Co-culture system; Nutrient recovery; Biomass valorization Strain(s): 227 PubMed: 30529478 DOI: 10.1016/j.biortech.2018.10.034 |
Zhu, T., Hou, S., Lu, X., Hess, W. R.
2017
Draft genome sequences of nine cyanobacterial strains from diverse habitats.
GenomeA,
5,
e01676-16 (article ID).
Strain(s): 30, 208, 592, 593, 1031, 2101, 2119, 2130 PubMed: 28254973 DOI: 10.1128/genomeA.01676-16 |
Ziemert, N., Ishida, K., Quillardet, P., Bouchier, C., Hertweck, C., de Marsac, N. T., Dittmann, E.
2008
Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa.
Appl. Environ. Microbiol.,
74,
1791-1797.
Strain(s): 298 PubMed: 18245249 DOI: 10.1128/AEM.02392-07 |
Ziemert, N., Ishida, K., Weiz, A., Hertweck, C., Dittmann, E.
2010
Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides.
Appl. Environ. Microbiol.,
76,
3568-3574.
Strain(s): 100, 101, 102, 843 PubMed: 20363789 DOI: 10.1128/AEM.02858-09 |
Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., Romanowska, E.
2017
Chloramphenicol acetyltransferase a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae.
Protoplasma,
254,
587-596.
Keywords: Cyanidioschyzon merolae; Chloramphenicol acetyltransferase (CAT) stable genome transformation Strain(s): 3377 PubMed: 26715590 DOI: 10.1007/s00709-015-0936-9 |
Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., Romanowska, E.
2017
Transformation of the Cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments.
Plant Mol. Biol.,
93,
171-183.
Keywords: Stable chloroplast transformation; Cyanidioschyzon merolae; Chloramphenicol acetyltransferase; PEG; Biolistic bombardment Strain(s): 1332 PubMed: 27796719 DOI: 10.1007/s11103-016-0554-8 |
Zienkiewicz, M., Krupnik, T., Drożak, A., Kania, K.
2019
PEG-mediated, stable, nuclear and chloroplast transformation of Cyanidioschizon merolae.
Bio-protocol,
9,
e3355 (article ID).
Strain(s): 1332, 3377 DOI: 10.21769/BioProtoc.3355 |
Zienkiewicz, M., Krupnik, T., Drożak, A., Wasilewska, W., Golke, A., Romanowska, E.
2018
Deletion of psbQ’ gene in Cyanidioschyzon merolae reveals the function of extrinsic PsbQ’ in PSII.
Plant Mol. Biol.,
96,
135–149.
Keywords: Stable red algae nuclear transformation; DTA toxin; Cyanidioschyzon merolae; Chloramphenicol; acetyltransferase; PEG; PsbQ’; PSII mutants; PSII extrinsic protein deletion Strain(s): 3377 PubMed: 29196904 DOI: 10.1007/s11103-017-0685-6 |
Zongyi, Y., Lu, L., Chen, J., Wei, D.
2018
Effect of crude glycerol on heterotrophic growth of Chlorella pyrenoidosa and Coccomyxa subellipsoidea C-169.
J. Appl. Phycol.,
30,
2989–2996.
Keywords: Chlorophyceae; Microalgae; Crude glycerol; Heterotrophic growth; Biodiesel Strain(s): 2166 DOI: 10.1007/s10811-018-1551-x |
Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.