Strain number NIES-702  
Phylum Cryptophyta  
Class Cryptophyceae  
Scientific name Rhodomonas falcata Butcher ex Hill & Wetherbee  
Synonym Chroomonas falcata Butcher  
Former name  
Common name  
Locality (Date of collection) Aberystwyth, Wales, U.K. (1956-**-**)  
Latitude / Longitude  
Habitat (Isolation source) Marine  
History < Erata, Mayumi < Hara, Yoshiaki < CCAP  
Isolator (Date of isolation) (1956-**-**)  
Identified by Butcher, R. W.  
State of strain Cryopreservation; Unialgal; Clonal; Non-axenic  
Culture condition
(Preculture condition)
Medium:  ESM  
Temperature:  15 C
Light intensity:  12-15 µmol photons/m2/sec, L/D cycle:  10L:14D
Duration:  1 M  
Gene information 18S rRNA ( AB240959 MK828406 ) , 28S rRNA ( MK828447 )  
Cell size (min - max)  
Organization Unicellular; Flagellate 
Characteristics Authentic strain  
Other strain no. Other collection strain no. : CCAP 978/5a
Other strain no. : M10  
Remarks Cryopreserved 
Movie  
Reference
Cunningham, B. R., Greenwold, M. J., Lachenmyer, E. M., Heidenreich, K, M., Davis, A. C., Dudycha, J. L., Richardson, T. L. 2019 Light capture and pigment diversity in marine and freshwater cryptophytes. J. Phycol., 55, 552-564.
Strain(s): 697698701702708 
PubMed: 30468692
DOI: 10.1111/jpy.12816

Greenwold, M. J., Cunningham, B. R., Lachenmyer, E. M., Pullman, J. M., Richardson, T. L., Dudycha, J. L. 2019 Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc. R. Soc. B-Biol. Sci., 286, 20190655 (article ID).
Keywords: photosynthesis; photosynthetically usable radiation; phycobilin; resource acquisition
Strain(s): 698702 
PubMed: 31088271
DOI: 10.1098/rspb.2019.0655

Mitani, E., Nakayama, F., Matsuwaki, I., Ichi, I., Kawabata, A., Kawachi, M., Kato, M. 2017 Fatty acid composition profiles of 235 strains of three microalgal divisions within the NIES Microbial Culture Collection. Microb. Resour. Syst., 33, 19-29.
Keywords: Cryptophyta; docosahexaenoic acid; eicosapentaenoic acid; fatty acid; Haptophyta; Heterokontophyta; microalgae
Strain(s): 1891415177111522322523323426527427527627727827928028128228429332332433033334434534634734835035337237738839139540740840941341441746146246648753454855355655755855956056258758858959060360562262369569669769869970070170270370470570670770870971071171271371471571674176576676780583799710011002100310041005100610071009101110161017104410451046104713021303132413271330133913401349135313701375137613791383138413851386138713911392139313951398139914001401169917001730181318151816182618271831186218631864186518741963196419651974197519762142214321442145214721482300233123322351236323642365236923702376250625332534253525362537259026332668268926902691269326942696269727072716271727182720272227232725272627292730273127322770277127722773283928402841284228432844285928722878289028993391368936903691 

Tanifuji, G., Onodera, N., Hara, Y. 2010 Nucleomorph genome diversity and its phylogenetic implications in cryptomonad algae. Phycol. Res., 58, 230-237.
Keywords: cryptomonads; endosymbiosis; evolution; genome reduction; nucleomorph; phylogeny
Strain(s): 274277280697699701702704708712715765 
DOI: 10.1111/j.1440-1835.2010.00580.x

Tanifuji, G., Erata, M., Ishida, K-I., Onodera, N., Hara, Y. 2006 Diversity of secondary endosymbiont-derived actin-coding genes in cryptomonads and their evolutionary implications. J. Plant Res., 119, 205-215.
Keywords: Cryptomonads; Nucleomorph; Symbiotic gene reorganization; Symbiont actin gene
Strain(s): 697700701702708712765 
PubMed: 16570126
DOI: 10.1007/s10265-006-0263-5

Erata, M. & Chihara, M. 1989 Re-examination of Pyrenomonas and Rhodomonas (Class Cryptophyceae) through ultrastructural survey of red pigmented cryptomonads. Bot. Mag. Tokyo, 102, 429-443.
Keywords: nucleomorph; periplastidal compartment; Pyrenomonas; Rhodomonas
Strain(s): 697698699700701702705706 
DOI: 10.1007/BF02488125

Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.

page-top