Search Reference

Zahradníková, M. 2017 Taxonomy and phylogeny of the family Fuscideaceae (Umbilicariales, Ascomycota) with special emphasis on Fuscidea. PhD thesis, University of Bergen, Norway, 196 pp.
Strain(s): 640215023422352 
Zarenezhad, S., Sano, T., Watanabe, M. M., Kawachi, M. 2012 Evidence of the existence of a toxic form of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in Japan. Phycol. Res., 60, 98-104.
Keywords: cyanobacteria; Cylindrospermopsis raciborskii; deoxy-cylindrospermopsin; distribution
Strain(s): 9923583 
DOI: 10.1111/j.1440-1835.2012.00639.x
Zehr, J. P., Ohki, K., Fujita, Y. 1991 Arrangement of nitrogenase structural genes in an aerobic filamentous nonheterocystous cyanobacterium. J. Bacteriol., 173, 7055-7058.
Strain(s): 3600 
PubMed: 1938909
DOI: 10.1128/jb.173.21.7055-7058.1991
Zehr, J. P., Ohki, K., Fujita, Y., Landry, D. 1991 Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067. J. Bacteriol., 173, 7059-7062.
Strain(s): 3600 
PubMed: 1657876
DOI: 10.1128/jb.173.21.7059-7062.1991
Zhang, C., Chen, G., Wang, Y., Guo, C., Zhou, J. 2018 Physiological and molecular responses of Prorocentrum donghaiense to dissolved inorganic phosphorus limitation. Mar. Pollut. Bull., 129, 562-572.
Keywords: Prorocentrum donghaiense; Dissolved inorganic phosphorus; Limitation; Suppression subtractive hybridization; Molecular response
Strain(s): 144 
PubMed: 29055559
DOI: 10.1016/j.marpolbul.2017.10.031
Zhang, H., Meng, G., Mao, F., Li, W., He, Y., Gin, K. Y.-H., Ong, C. N. 2019 Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa. J. Hazard. Mater., 367, 120-127.
Keywords: Metabolomics; Mass spectrometry; Algaecides; Mechanisms; Untargeted analysis
Strain(s): 843 
DOI: 10.1016/j.jhazmat.2018.12.069
Zhang, L., Fan, Y., Shi, F., Qin, S., Liu, B. 2012 Molecular cloning, characterization, and expression analysis of a cytosolic HSP90 gene from Haematococcus pluvialis. J. Appl. Phycol., 24, 1601-1612.
Keywords: Haematococcus pluvialis; Heat shock protein 90; cDNA cloning; qRT-PCR; mRNA expression
Strain(s): 144 
DOI: 10.1007/s10811-012-9821-5
Zhang, X., Song, L., Zhang, P., He, J., Liu, Y., Matsuura, H., Watanabe, M. M. 2012 Grazing on toxic cyanobacterial blooms by tadpoles of edible frong Rana grylio. Phycol. Res., 60, 20-26.
Keywords: blue-green algae, cyanobacterial bloom; grazing; microcystin; Microcystis; pond; tadpole; trophic relationship
Strain(s): 90 
DOI: 10.1111/j.1440-1835.2011.00627.x
Zhang, Z., Wang, B., Hu, Q., Sommerfeld, M., Li, Y., Han, D. 2016 A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotech. Bioeng., 113, 2088-2099.
Keywords: astaxanthin; Haematococcus pluvialis; heterotrophy; acclimation
Strain(s): 144 
PubMed: 27563850
DOI: 10.1002/bit.25976
Zhao, L., Song, Y., Li, L., Gan, N., Brand, JJ., Song, L. 2018 The highly heterogeneous methylated genomes and diverserestriction-modification systems of bloom-forming Microcystis. Harmful Algae, 75, 87-93.
Keywords: Cyanobacterial bloom; DNA methylation modification; Epigenetics; Methyltransferase; Microcystis; SMRT
Strain(s): 8432549 
PubMed: 29778228
DOI: 10.1016/j.hal.2018.04.005
Zhou, L., Chen, G., Cui, N., Pan, Q., Song, X., Zou, G. 2019 Allelopathic effects on Microcystis aeruginosa and allelochemical identification in the cuture solutions of typical artificial floating-bed plants. Bull. Environ. Contam. Toxicol., 102, 115–121.
Keywords: Allelopathy; Cyperus alternifolius; Canna generalis; Microcystis aeruginosa; Allelochemicals
Strain(s): 44 
DOI: 10.1007/s00128-018-2486-2
Zhou, S., Nakai, S., Hosomi, M., Sezaki, Y., Tominaga, M. 2004 Inhibition of cyanobacterial growth by allelopathy of reed. Jpn. J. Water Treat. Biol., 40, 23-28 (in Japanese with English summary).
Keywords: reed; Phormidium tenue; cyanobacteria; inhibition; allelopathy
Strain(s): 512 
Zhu, F., Massana, R., Not, F., Marie, D., Vaulot, D. 2005 Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol., 52, 79-92.
Keywords: Coastal ecosystems; Ecology; Fluorescent in situ hybridization; Picoplankton; Prasinophytes; Quantitative PCR
Strain(s): 26732687 
PubMed: 16329895
DOI: 10.1016/j.femsec.2004.10.006
Zhu, J., Wakisaka, M. 2018 Growth promotion of Euglena gracilis by ferulic acid from rice bran. AMB Express, 8, 16 (article ID).
Keywords: Euglena gracilis; Ferulic acid; Paramylon; Photosynthetic pigments
Strain(s): 48 
PubMed: 29423882
DOI: 10.1186/s13568-018-0547-x
Zhu, S., Qin, L., Feng, P., Shang, C., Wang, Z., Yuan, Z. 2019 Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor. Bioresour. Technol., 274, 313-320.
Keywords: Microalgae; Activated sludge; Co-culture system; Nutrient recovery; Biomass valorization
Strain(s): 227 
DOI: 10.1016/j.biortech.2018.10.034
Zhu, T., Hou, S., Lu, X., Hess, W. R. 2017 Draft genome sequences of nine cyanobacterial strains from diverse habitats. GenomeA, 5, e01676-16 (article ID).
Strain(s): 302085925931031210121192130 
PubMed: 28254973
DOI: 10.1128/genomeA.01676-16
Ziemert, N., Ishida, K., Weiz, A., Hertweck, C., Dittmann, E. 2010 Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl. Environ. Microbiol., 76, 3568-3574.
Strain(s): 100101102843 
PubMed: 20363789
DOI: 10.1128/AEM.02858-09
Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., Romanowska, E. 2017 Chloramphenicol acetyltransferase a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae. Protoplasma, 254, 587-596.
Keywords: Cyanidioschyzon merolae; Chloramphenicol acetyltransferase (CAT) stable genome transformation
Strain(s): 3377 
PubMed: 26715590
DOI: 10.1007/s00709-015-0936-9
Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., Romanowska, E. 2017 Transformation of the Cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments. Plant Mol. Biol., 93, 171-183.
Keywords: Stable chloroplast transformation; Cyanidioschyzon merolae; Chloramphenicol acetyltransferase; PEG; Biolistic bombardment
Strain(s): 1332 
PubMed: 27796719
DOI: 10.1007/s11103-016-0554-8
Zienkiewicz, M., Krupnik, T., Drożak, A., Wasilewska, W., Golke, A., Romanowska, E. 2018 Deletion of psbQ’ gene in Cyanidioschyzon merolae reveals the function of extrinsic PsbQ’ in PSII. Plant Mol. Biol., 96, 135–149.
Keywords: Stable red algae nuclear transformation; DTA toxin; Cyanidioschyzon merolae; Chloramphenicol; acetyltransferase; PEG; PsbQ’; PSII mutants; PSII extrinsic protein deletion
Strain(s): 3377 
PubMed: 29196904
DOI: 10.1007/s11103-017-0685-6
Zongyi, Y., Lu, L., Chen, J., Wei, D. 2018 Effect of crude glycerol on heterotrophic growth of Chlorella pyrenoidosa and Coccomyxa subellipsoidea C-169. J. Appl. Phycol., 30, 2989–2996.
Keywords: Chlorophyceae; Microalgae; Crude glycerol; Heterotrophic growth; Biodiesel
Strain(s): 2166 
DOI: 10.1007/s10811-018-1551-x
Zhu, J., Hong, D. D., Wakisaka, M. 2019 Phytic acid extracted from rice bran as a growth promoter for Euglena gracilis. Open Chem., 17, 57-63.
Keywords: phytic acid; Euglena gracilis; photosynthetic pigments; cell morphology
Strain(s): 48 

Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.

page-top