Search Reference

Zzzbe 2022 Chapter 2 - Specialized metabolites from cyanobacteria and their biological activities. In The Pharmacological Potential of Cyanobacteria, Eds. by Lopes, G., Silva, M., Vasconcelos, V., Academic press pp. 21-54.
Keywords: Kumla, D., Sousa, M. E., Vasconcelos, V., Kijjoa, A.
Strain(s): 88 
DOI: 10.1016/B978-0-12-821491-6.00002-8
Zahradníková, M. 2017 Taxonomy and phylogeny of the family Fuscideaceae (Umbilicariales, Ascomycota) with special emphasis on Fuscidea. PhD thesis, University of Bergen, Norway, 196 pp.
Strain(s): 640215023422352 
Zarenezhad, S., Sano, T., Watanabe, M. M., Kawachi, M. 2012 Evidence of the existence of a toxic form of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in Japan. Phycol. Res., 60, 98-104.
Keywords: cyanobacteria; Cylindrospermopsis raciborskii; deoxy-cylindrospermopsin; distribution
Strain(s): 9923583 
DOI: 10.1111/j.1440-1835.2012.00639.x
Zehr, J. P., Ohki, K., Fujita, Y. 1991 Arrangement of nitrogenase structural genes in an aerobic filamentous nonheterocystous cyanobacterium. J. Bacteriol., 173, 7055-7058.
Strain(s): 3600 
PubMed: 1938909
DOI: 10.1128/jb.173.21.7055-7058.1991
Zehr, J. P., Ohki, K., Fujita, Y., Landry, D. 1991 Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067. J. Bacteriol., 173, 7059-7062.
Strain(s): 3600 
PubMed: 1657876
DOI: 10.1128/jb.173.21.7059-7062.1991
Zeng, Y., Wang, J., Yang, C., Ding, M., Hamilton, P. B., Zhang, X., Yang, C., Zhnang, L., Dai, X. 2021 A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Sci. Total Environ., 769, 144489 (article ID).
Keywords: Microcystis aeruginosa; Algicidal activity; Predator and prey; Streptomyces
Strain(s): 4490843 
PubMed: 33465632
DOI: 10.1016/j.scitotenv.2020.144489
Zepernick, B. N., Gann, E. R., Martin, R. M., Pound, H. L., Krausfeldt, L. E., Chaffin, J. D., Wilhelm, S. W. 2021 Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie. Front. Microbiol., 12, 598736 (article ID).
Keywords: CyanoHABs; Lake Erie; biogenic silica; diatoms; lake alkalinity; microcystis blooms
Strain(s): 843 
PubMed: 33717001
DOI: 10.3389/fmicb.2021.598736
Zha, J., Steglich, C., Scholz, I., Hess, W. R., Kirilovsky, D. 2021 Inverse regulation of light harvesting and photoprotection is mediated by a 3' end-derived sRNA in cyanobacteria. Plant Cell, 33, 358-380.
Strain(s): 738062134 
PubMed: 33793852
DOI: 10.1093/plcell/koaa030
Zha, S., Liang, Y., Oda, T., Ishibashi, F. 2020 Bioactivities of algicidal C18 hydroxy unsaturated fatty acid isolated from the red alga Tricleocarpa jejuensis and its synthesized propargylic derivative. Algal Res., 52, 102097 (article ID).
Keywords: Tricleocarpa jejuensis; C18 hydroxy unsaturated fatty acid; Red tide phytoplankton; Algicidal activity; Antibacterial activity; Cytotoxicity
Strain(s): 13621 
DOI: 10.1016/j.algal.2020.102097
Zhang, C., Chen, G., Wang, Y., Guo, C., Zhou, J. 2018 Physiological and molecular responses of Prorocentrum donghaiense to dissolved inorganic phosphorus limitation. Mar. Pollut. Bull., 129, 562-572.
Keywords: Prorocentrum donghaiense; Dissolved inorganic phosphorus; Limitation; Suppression subtractive hybridization; Molecular response
Strain(s): 144 
PubMed: 29055559
DOI: 10.1016/j.marpolbul.2017.10.031
Zhang, H., Meng, G., Mao, F., Li, W., He, Y., Gin, K. Y.-H., Ong, C. N. 2019 Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa. J. Hazard. Mater., 367, 120-127.
Keywords: Metabolomics; Mass spectrometry; Algaecides; Mechanisms; Untargeted analysis
Strain(s): 843 
PubMed: 30594710
DOI: 10.1016/j.jhazmat.2018.12.069
Zhang, L., Fan, Y., Shi, F., Qin, S., Liu, B. 2012 Molecular cloning, characterization, and expression analysis of a cytosolic HSP90 gene from Haematococcus pluvialis. J. Appl. Phycol., 24, 1601-1612.
Keywords: Haematococcus pluvialis; Heat shock protein 90; cDNA cloning; qRT-PCR; mRNA expression
Strain(s): 144 
DOI: 10.1007/s10811-012-9821-5
Zhang, P., MacTavish, B. S., Yang, G., Chen, M., Roh, J., Newsome, K. R., Bruner, S. D., Ding, Y. 2020 Cyanobacterial dihydroxyacid dehydratases are a promising growth inhibition target. ACS Chem. Biol., 15, 2281–2288.
Strain(s): 298 
PubMed: 32786290
DOI: 10.1021/acschembio.0c00507
Zhang, X., Ohtsuki, H., Makino, W., Kato, Y., Watanabe, H., Urabe, J. 2021 Variations in effects of ectosymbiotic microbes on the growth rates among different species and genotypes of Daphnia fed different algal diets. Ecol. Res., 36, 303-312.
Strain(s): 2364 
DOI: 10.1111/1440-1703.12194
Zhang, X., Song, L., Zhang, P., He, J., Liu, Y., Matsuura, H., Watanabe, M. M. 2012 Grazing on toxic cyanobacterial blooms by tadpoles of edible frong Rana grylio. Phycol. Res., 60, 20-26.
Keywords: blue-green algae, cyanobacterial bloom; grazing; microcystin; Microcystis; pond; tadpole; trophic relationship
Strain(s): 90 
DOI: 10.1111/j.1440-1835.2011.00627.x
Zhang, Z., Qu, C., Yao, R., Nie, Y., Xu, C., Miao, J., Zhong, B. 2019 The parallel molecular adaptations to the Antarctic cold environment in two psychrophilic green algae. Genome Biol. Evol., 11, 1897-1908.
Keywords: Antarctic; psychrophilic green algae; positive selection, molecular convergence; adaptation
Strain(s): 691 
PubMed: 31106822
DOI: 10.1093/gbe/evz104
Zhang, Z., Wang, B., Hu, Q., Sommerfeld, M., Li, Y., Han, D. 2016 A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotech. Bioeng., 113, 2088-2099.
Keywords: astaxanthin; Haematococcus pluvialis; heterotrophy; acclimation
Strain(s): 144 
PubMed: 27563850
DOI: 10.1002/bit.25976
Zhao, L., Song, Y., Li, L., Gan, N., Brand, JJ., Song, L. 2018 The highly heterogeneous methylated genomes and diverserestriction-modification systems of bloom-forming Microcystis. Harmful Algae, 75, 87-93.
Keywords: Cyanobacterial bloom; DNA methylation modification; Epigenetics; Methyltransferase; Microcystis; SMRT
Strain(s): 8432549 
PubMed: 29778228
DOI: 10.1016/j.hal.2018.04.005
Zhou, L., Chen, G., Cui, N., Pan, Q., Song, X., Zou, G. 2019 Allelopathic effects on Microcystis aeruginosa and allelochemical identification in the cuture solutions of typical artificial floating-bed plants. Bull. Environ. Contam. Toxicol., 102, 115–121.
Keywords: Allelopathy; Cyperus alternifolius; Canna generalis; Microcystis aeruginosa; Allelochemicals
Strain(s): 44 
PubMed: 30483838
DOI: 10.1007/s00128-018-2486-2
Zhou, S., Nakai, S., Hosomi, M., Sezaki, Y., Tominaga, M. 2004 Inhibition of cyanobacterial growth by allelopathy of reed. Jpn. J. Water Treat. Biol., 40, 23-28 (in Japanese with English summary).
Keywords: reed; Phormidium tenue; cyanobacteria; inhibition; allelopathy
Strain(s): 512 
DOI: 10.2521/jswtb.40.23
Zhou, W., Zhang, X., Wan, A., Yang, L., Gan, Q., Yi, L., Summons, R. E., Volkman, J. K., Lu, Y. 2022 Widespread sterol methyltransferase participates in the biosynthesis of both C4α- and C4β-methyl sterols. J. Am. Chem. Soc., 144, 9023-9032.
Strain(s): 3808 
PubMed: 35561259
DOI: 10.1021/jacs.2c01401
Zhu, F., Massana, R., Not, F., Marie, D., Vaulot, D. 2005 Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol., 52, 79-92.
Keywords: Coastal ecosystems; Ecology; Fluorescent in situ hybridization; Picoplankton; Prasinophytes; Quantitative PCR
Strain(s): 26732687 
PubMed: 16329895
DOI: 10.1016/j.femsec.2004.10.006
Zhu, J. & Wakisaka, M. 2018 Growth promotion of Euglena gracilis by ferulic acid from rice bran. AMB Express, 8, 16 (article ID).
Keywords: Euglena gracilis; Ferulic acid; Paramylon; Photosynthetic pigments
Strain(s): 48 
PubMed: 29423882
DOI: 10.1186/s13568-018-0547-x
Zhu, J. & Wakisaka, M. 2019 Effect of air nanobubble water on the growth and metabolism of Haematococcus lacustris and Botryococcus braunii. J. Nutr. Sci. Vitaminol., 65, S212-S216.
Keywords: Botryococcus braunii; Haematococcus lacustris; astaxanthin; lipid; nanobubble water
Strain(s): 1442199 
PubMed: 31619633
DOI: 10.3177/jnsv.65.S212
Zhu, J. & Wakisaka, M. 2020 Effect of two lignocellulose related sugar alcohols on the growth andmetabolites biosynthesis of Euglena gracilis. Bioresour. Technol., 303, 122950 (article ID).
Keywords: Euglena gracilis; Mannitol; Xylitol; Fourier transform infrared spectroscopy; Multivariate analy
Strain(s): 48 
PubMed: 32045866
DOI: 10.1016/j.biortech.2020.122950
Zhu, J. & Wakisaka, M. 2020 Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis. Bioresour. Technol., 296, 122343 (article ID).
Keywords: Euglena gracilis; Phytic acid; Fourier transform infrared spectroscopy; Multivariate analysis; Phytas
Strain(s): 48 
PubMed: 31711907
DOI: 10.1016/j.biortech.2019.122343
Zhu, J. & Wakisaka, M. 2021 Application of lignosulfonate as the growth promotor for freshwater microalga Euglena gracilis to increase productivity of biomass and lipids. Fuel, 283, 118920 (article ID).
Keywords: Euglena gracilis; Lignosulfonates; Photosynthetic pigment; Lipid accumulation; Multivariate analysis
Strain(s): 48 
DOI: 10.1016/j.fuel.2020.118920
Zhu, J., Hong, D. D., Wakisaka, M. 2019 Phytic acid extracted from rice bran as a growth promoter for Euglena gracilis. Open Chem., 17, 57-63.
Keywords: phytic acid; Euglena gracilis; photosynthetic pigments; cell morphology
Strain(s): 48 
DOI: 10.1515/chem-2019-0006
Zhu, J., Tan, X., Hafid, H. S., Wakisaka, M. 2021 Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin. Bioresour. Technol., 321, 124441 (article ID).
Keywords: Euglena gracilis; Phenolic compounds; Lignin; Carotenoids; Lipid
Strain(s): 48 
DOI: 10.1016/j.biortech.2020.124441
Zhu, J., Tan, X., Hafid, H. S., Wakisaka, M. 2023 A novel strategy to promote microalgal growth and lipid productivity by supplementation of lignin related phenolic elicitors. Fuel, 334, 126775 (article ID).
Keywords: Microalgae; Phenolic elicitors; Cell morphology; Photosynthesis; Lipids
Strain(s): 48 
DOI: 10.1016/j.fuel.2022.126775
Zhu, S., Feng, S., Xu, Z., Qin, L., Shang, C., Feng, P., Wang, Z., Yuan, Z. 2019 Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal. Bioresour. Technol., 285, 121353 (article ID).
Keywords: Liquid digestate; Biomass production; Lipid productivity; Wastewater treatment; Microbial community analysis
Strain(s): 227 
PubMed: 31005641
DOI: 10.1016/j.biortech.2019.121353
Zhu, S., Jiang, R., Qin, L., Huang, D., Yao, C., Xu, J., Wang, Z. 2022 Integrated strategies for robust growth of Chlorella vulgaris on undiluted dairy farm liquid digestate and pollutant removal. Sci. Total Environ., 852, 158518 (article ID).
Strain(s): 227 
PubMed: 36063926
DOI: 10.1016/j.scitotenv.2022.158518
Zhu, S., Qin, L., Feng, P., Shang, C., Wang, Z., Yuan, Z. 2019 Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor. Bioresour. Technol., 274, 313-320.
Keywords: Microalgae; Activated sludge; Co-culture system; Nutrient recovery; Biomass valorization
Strain(s): 227 
PubMed: 30529478
DOI: 10.1016/j.biortech.2018.10.034
Zhu, T., Hou, S., Lu, X., Hess, W. R. 2017 Draft genome sequences of nine cyanobacterial strains from diverse habitats. GenomeA, 5, e01676-16 (article ID).
Strain(s): 302085925931031210121192130 
PubMed: 28254973
DOI: 10.1128/genomeA.01676-16
Ziemert, N., Ishida, K., Quillardet, P., Bouchier, C., Hertweck, C., de Marsac, N. T., Dittmann, E. 2008 Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa. Appl. Environ. Microbiol., 74, 1791-1797.
Strain(s): 298 
PubMed: 18245249
DOI: 10.1128/AEM.02392-07
Ziemert, N., Ishida, K., Weiz, A., Hertweck, C., Dittmann, E. 2010 Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl. Environ. Microbiol., 76, 3568-3574.
Strain(s): 100101102843 
PubMed: 20363789
DOI: 10.1128/AEM.02858-09
Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., Romanowska, E. 2017 Chloramphenicol acetyltransferase a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae. Protoplasma, 254, 587-596.
Keywords: Cyanidioschyzon merolae; Chloramphenicol acetyltransferase (CAT) stable genome transformation
Strain(s): 3377 
PubMed: 26715590
DOI: 10.1007/s00709-015-0936-9
Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., Romanowska, E. 2017 Transformation of the Cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments. Plant Mol. Biol., 93, 171-183.
Keywords: Stable chloroplast transformation; Cyanidioschyzon merolae; Chloramphenicol acetyltransferase; PEG; Biolistic bombardment
Strain(s): 1332 
PubMed: 27796719
DOI: 10.1007/s11103-016-0554-8
Zienkiewicz, M., Krupnik, T., Drożak, A., Kania, K. 2019 PEG-mediated, stable, nuclear and chloroplast transformation of Cyanidioschizon merolae. Bio-protocol, 9, e3355 (article ID).
Strain(s): 13323377 
DOI: 10.21769/BioProtoc.3355
Zienkiewicz, M., Krupnik, T., Drożak, A., Wasilewska, W., Golke, A., Romanowska, E. 2018 Deletion of psbQ’ gene in Cyanidioschyzon merolae reveals the function of extrinsic PsbQ’ in PSII. Plant Mol. Biol., 96, 135–149.
Keywords: Stable red algae nuclear transformation; DTA toxin; Cyanidioschyzon merolae; Chloramphenicol; acetyltransferase; PEG; PsbQ’; PSII mutants; PSII extrinsic protein deletion
Strain(s): 3377 
PubMed: 29196904
DOI: 10.1007/s11103-017-0685-6
Zongyi, Y., Lu, L., Chen, J., Wei, D. 2018 Effect of crude glycerol on heterotrophic growth of Chlorella pyrenoidosa and Coccomyxa subellipsoidea C-169. J. Appl. Phycol., 30, 2989–2996.
Keywords: Chlorophyceae; Microalgae; Crude glycerol; Heterotrophic growth; Biodiesel
Strain(s): 2166 
DOI: 10.1007/s10811-018-1551-x
Zhang, K., Wan, M., Bai, W., Bao, Z., Duan, X., Wang, W., Fan, F., Li, Y. 2024 A novel heterotrophic cultivation process of Euglena gracilis based on NaCl stress significantly increases the paramylon production. Algal Res., 78, 103391 (article ID).
Strain(s): 48 
DOI: 10.1016/j.algal.2024.103391

Unauthorized copying and replication of text, images, and tables in our homepage, are prohibited.

page-top